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Cavitation in centrifugal pumps: physics, analysis,
conseguences, mitigations.
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= Cauvitation as physical phenomenon is known since many years: SCIENCES

ET

= Euler, 1754: « A more complete theory of machines that are set in SO LR T L
motion by reaction with water », Mémoires de I'Académie Royale des
Sciences et des Belles Lettres a Berlin, vol. 10 (1754), pp. 227-295 TS
(via Google Books).

4 BERLIN

= |tis still nowadays one of the most investigated phenomena in < RS LA

MDCCLVIL

hydraulic machinery because: o)

= QOperation limits, operating conditions and consequently the physical
size of the machines are determined by cavitation limitations

THEORIE

PLUS COMPLETTE DES MACHINES
QUI SONT MISES EN MOUVEMENT
PAR LA REACTION DE L'EAU,

rar M. EULER.
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Introduction

= Cauvitation is 2-phase flow with phase transition driven by
pressure gradients

PA
= Different cavitation types can be distinguished:

= Bubble cavitation
» Attached or Cloud cavitation
= \ortex cavitation

S oLID

= Main problems are: Py(Ty)
= Noise
= Vibrations

Cavitation

Ebullition

V APOR

» Material removal -> erosion

= Performance impairment o
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Introduction

There is a large variety of engineering processes and applications
where possible mechanisms triggering local static pressure drop
responsible for the initial evaporation can be identified:

= Propellers for marine application

Sudden restrictions in pipes or ducts

Control valves’ plugs or cages

Suction impeller of centrifugal pumps

Stationary components of centrifugal pumps

Praktikerkonferenz

__Eraz




= Zone of lowest pressure in a pump
impeller is close to the leading edge

= Depending on operating point (part load
or overload) cavitation forms close to the
impeller blade either at visible or not
visible surface

= Part load caviation can be visually
observed in specific test machines
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Cavitation in centrifugal pumps — Stationary components

= Downstream

Under certain conditions local static pressure can fall below vapor
pressure even after the rotating component has imparted
mechanical energy to flow stream!

Why is cavitation on stationary components of pumps relevant?

= Limitation of the operation envelop for small specific speed
hydraulics due to cavitation at diffuser or volute channel(s)
throat at overload

= Heavy erosion for high energy pumps when operating at part
load usually close to their minimum continuous stable flow

= Performance impairment
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= Downstream

. . . L\
Under certain conditions local static pressure can fall below vapor
pressure even after the rotating component has imparted
mechanical energy to flow stream!

Why is cavitation on stationary components of pumps relevant?
= Limitation of the operation envelop for small specific speed

hydraulics due to cavitation at diffuser or volute channel(s)
throat at overload

= Heavy erosion for high energy pumps when operating at part
load usually close to their minimum continuous stable flow

= Performance impairment
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Impeller: flow condition at inlet

Approach flow and pressure distribution

= Difference between blade angle and flow

angle causes changes in pressure
distribution

= Positive incidence (at part-load and design A
point) yields reduction in pressure at suction

surface

= Negative incidence (at overload) move
pressure minimum to pressure surface

= |If pressure drop is sufficient, fluid will
evaporate

Total pressure ,’, 2 ] : oo
p._ Static pressure | (p/2)Cs Ds |
! N
t \
S Ec?m( —+ e - 2] p g NPSH
At py= Pmin: 2 sinfay c?y A ;
pxgxNPSH; v Dy __'//\pss_With
Ap = (p/2)hwi W cavitation
pV,1 - . .
pss without cavitation
Y L 4
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Stationary components: cavitation & off-design

Cavitation in stationary components tends to manifest more predominantly in off-design conditions, i.e. at
flow rates smaller and/or larger than Best Efficiency Point

Physical mechanism triggering cavitation is mostly incidence due to change in absolute flow angle with
changing pump’s flow rate, however:

s % ‘* o

o

\ = Partload is usually associated with
impeller recirculation (1D approach
for analysis not possible!)

= Qverload operation does not come
with recirculation (allows for
simplified approach)

= Praktikerkonferenz
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How does it manifest?

Typical indicators of pump cavitation include:

= Deteriorated suction capability - Head generation
= Enhanced secondary flow structures / vortices - Vibrations

= Erosion > Component life
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How does it manifest?

= Suction capability / Head generation (impeller)

= |nception H // // //
= First appearance of cavitation bubbles [m] " \

» Defined when ~ Lc/D, = 1%

= Head impairment |
= 0%, 1% or 3% head reduction
= Usually, 3% is used due to simplicity of measurement
= 0% very difficult to estimate

= Full

= Sudden head drop, no further reduction in suction
pressure possible NPSH 39 NPSH s NPSH i NPSH [m]

NPSH g9

= Recommended

= OEM defined value for safe operation Praktikerkonferenz
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How does it manifest?

= Suction capability / Head generation (stationary components)

psi[-]
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How does it manifest?

= Suction capability / Head generation (stationary components)

= What is actually causing the head drop
= |ncreased hydraulic losses

= Reduced mechanical work imparted by the impeller to

the fluid
= Combination of both

= Absorbed power indicates the predominant aspect is
the reduction of mechanical work (so concerning the

kinematics of fluid flow)

Lambda [-]
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o
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How does it manifest?

Erosion (physics)

Cavitation erosion is due the collapse of bubbles or
bubble clouds in the vicinity of a solid surface

One hypothesis is that the erosion is due to a micro-
jet formed during the collapse of bubbles

Another hypothesis attributes the erosion to the
shockwave associated to the bubble collapse
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How does it manifest?

= Erosion (impeller)
= Zone with highest erosion risk is usually the impeller
eye
= Pressure drop over profile inlet causes evaporation

= Erosion intensity depends on type of flow and
operating conditions

= Operating conditions determine location of lowest
pressure

= Time until damage depends on energy density

» U, used to assess cavitation risk g
' Praktikerkonferenz
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How does it manifest?

= Erosion (stationary components upstream)

Characteristic partload phenomena include impeller inlet
recirculation

When this special flow regime establishes, large low-
pressure areas form and propagate way into pump’s
suction casing

Cavitation may take place also at impeller’s eye wear ring
due to sudden pressure drop of leakage flow through
running clearances.

Source: Skara 2014, «Experimental
observation of Cavitation Phenomena
in Centrifugal Pump impellers at Part
load, PhD Thesis
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How does it manifest?

Erosion (stationary components downstream)

Excessive part-load operation can effect other pump
components

Volute or diffuser cavitation

= At very low part load, rotor stator interaction can lead
to significant pressure drop at collector inlet

= Additionally, vortices can occur

These erosion problems are less common and
generally attributed to excessive off-design operation
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How does it manifest?

= Erosion (stationary components downstream)

The imposion of cavitation bubbles caused by flarge
flow incidence has a much higher erosive power when it
takes place downstream the impeller, as the energy
involved in the process is much higher
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How does it manifest?

= Secondary flows (stationary
components downstream)

Partload operation is intrinsically
transient.

Perturbances originating from that
(or those) vanes in stall condition
propagate to adjacent vanes so
inducing another stall.

This sequence of phenomena, well
known in compressors, may trigger
what is commonly referred to as
rotating stall, here coupled with
vortex formation.

WO\

Frame No. 1342 Frame No. 1344 Frame No. 1350, Frame No. 1355,
t=0.3355s t=0.3360s t=0.3375s k
"-—— *- 4 - > "’1 vv—‘ 1' ‘. B “""‘“ . ‘. ';

Frame No. 1363, t = Frame No. 1370, Frame No. 1375, t =

0.3408 s

Frame No. 1360,
t=0.3400s
g eI

Figure 5: Evaluation of a cavitating vortex in diffuser channel (q* = 0.4)
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Analysis and remedies

= Testing

= N(et) P(ositive) S(uction) H(ead) represents the
difference between absolute suction head and
vapor pressure expressed as head

»

Hy = _bv_
p ) g [ ZS
= Definition for pump: Y -z
— 2
NPSH = Ps.abs — Py + Z _|_C_S
r-9 29

» Definition for installation:

. 2
NPSH = Peass — By + 2z, + C —H,
Pr-9 29 '
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Analysis and remedies

Testing

Standard tests

» Assessment of NPSH values at different flow

rates

= Establishing NPSH curves for 3% head drop

Advanced tests

= Bubble observations to establish cavitation
extend at different suction pressures

» Cavitation noise measurements to assess
cavitation inception at impeller pressure

surface

B R
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Analysis and remedies

= Cavitation modeling in modern CFD codes

= Criterion for cavitation inception
= First bubble explosion not visible

= Small cavities very much influence by the water

quality
= Cavitation Inception: Lcav/D2 = 0.01

= Criterion for head impairment

= Head impairment prediction using calculated head
with CFD using cavitation model is not very stable

Lc/R2 [']

= The head impairment is assessed from bubble length

or blockage of the cavity in the
blade-to-blade throat area
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Analysis and remedies

= An example of CFD validation

= Boiler feed pump retrofit project for a Combined Cycle plant

= Pump selected for cavitation free operation

= Existing suction impeller suffered of cavitation erosion on the
suction side (visible side) of the vanes

= New impeller design has allowed a cavitation free operation
for a cavitation number equal to o;; = 0.5

= Very good agreement between simulation and experiment for
inception at suction surface

Praktikerkonferenz
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= 1D approach

Hp,ThrnaI [m]
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Analysis and remedies

= |mpeller design

= Suction impeller can be designed either for low NPSH,,, (high Nss) or low NPSH,

= Each option will result in different designs and cavitation behavior

PStatiC *
low NPSH,, .
B, =101t0 15° ©

NPSHg,
low NPSH, NPSHy, -
NPSH, —

5, =05t008 —
NPSH, —

B, = 14 t0 18°
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Analysis and remedies

= |nlet case design

= Classical inlet casings for multistage boiler
feedpumps
= Suction casings of between-bearing pumps
produce strongly non-uniform fully 3-dimensional
flows to the impeller. Consequently incidence,
cavity length and bubble volume vary over the
circumference.

= Optimized suction casing for multistage barrel
pumps
= Inlet vanes ensure uniform, axial inflow to suction
impeller
= No incidence variation over circumference

Praktikerkonferenz

~ braz

=7




Analysis and remedies

" |nducers

= |nducers are axial geometries installed in the
eye of an impeller

= They are able to generate head in the
presence of significant cavitation

= |tis possible to increase the achievable NSS
for an industrial pump up to values of Nss =
300 to 450
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Analysis and remedies

= |nducer design

= Modern inducer designs allow an improved

suction capability on a much larger operating
range

= No improvement to be expected at high flows
= Selection needs to account for maximum flow rate

= Design characteristics
= Convergent meridional shape

= Strong sweep back of the inducer leading edge
= Variable blade angle
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Analysis and remedies

= Volute lip profiling

©
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Analysis and remedies

= Experimental investigation

= Model pump
" |nternal pressure measurement

= |nterchangeable lip insert to allow
for direct comparison of different
profiles

= Validation of numerical techniques
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Calculation Handbook Volume 1 ULZER

Analysis and remedies
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Conclusmns

Cavitation is a well-known phenomenon, it's one of the primary issues associated to centrifugal pumps’
design and operation.

= Typically, impellers are the components most affected by cavitation. However, although rather counter-
intuitive, cavitation in centrifugal pumps’ stationary components may take place also after mechanical
work is imparted to fluid stream

= |t may manifest in different ways: erosion, noise, instability, secondary flows, vibration, head generation
etc.

= Generally, off-design conditions are more prone to manifesting casing cavitation
= Experimental evidences confirm all of the aforementioned symptoms

= This phenomenon can be analyzed with different approaches, simple (1D calculation) or complex (CFD,
including 2-phase models)

= Fine tuning of impeller, suction, volute or diffuser may lead to drastic reduction of cavitation risk
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Thank you for listening!
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